Multivariate online kernel density estimation with Gaussian kernels

نویسندگان

  • Matej Kristan
  • Ales Leonardis
  • Danijel Skocaj
چکیده

We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization scheme which maintains the KDE’s complexity low. We compare the proposed online KDE to the state-of-the-art approaches on examples of estimating stationary and non-stationary distributions, and on examples of classification. The results show that the online KDE outperforms or achieves a comparable performance to the state-of-the-art and produces models with a significantly lower complexity while allowing online adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Extensible Online Multivariate Kernel Density Estimation

In this paper we present xokde++, a state-of-the-art online kernel density estimation approach that maintains Gaussian mixture models input data streams. The approach follows state-of-the-art work on online density estimation, but was redesigned with computational efficiency, numerical robustness, and extensibility in mind. Our approach produces comparable or better results than the current sta...

متن کامل

Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices

This paper analyses the kernel density estimation on spaces of Gaussian distributions endowed with different metrics. Explicit expressions of kernels are provided for the case of the 2-Wasserstein metric on multivariate Gaussian distributions and for the Fisher metric on multivariate centred distributions. Under the Fisher metric, the space of multivariate centred Gaussian distributions is isom...

متن کامل

Expanding Gaussian kernels for multivariate conditional density estimation

In this paper, we propose a new method to estimate the multivariate conditional density, f(mjx), a density over the output space m conditioned on any given input x. In particular, we are interested in cases where the number of available training data points is relatively sparse within x space. We start from a priori considerations and establish certain desirable characteristics in kernel functi...

متن کامل

What Do Kernel Density Estimators Optimize?

Some linkages between kernel and penalty methods of density estimation are explored. It is recalled that classical Gaussian kernel density estimation can be viewed as the solution of the heat equation with initial condition given by data. We then observe that there is a direct relationship between the kernel method and a particular penalty method of density estimation. For this penalty method, ...

متن کامل

Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds.

This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2011